FC2ブログ
K-SOHYA POEM BLOG
私のBLOGは詩歌句の「短詩形」文芸に特化して編集している。 今はもう無くなったが、朝日新聞の大岡信「折々のうた」などの体裁を参考にして少し長めの記事を書いている。自作も多めに採り上げている。
202007<<12345678910111213141516171819202122232425262728293031>>202009
参考資料 「原子力発電」の危険性と今後について
TKY201103290529.jpg

(参考資料)
   2011/03/28福島原発敷地内の土壌からプルトニュームが検出された。
 今や排水中から極めて高い数値の放射能が測定されている。  
 極めて危険な時期に突入したのは確かである。
   ここに改めて資料を掲載して注意を喚起したい。
 福島原発三号機の燃料としてプルサーマルでプルトニュームが使われている。
 その燃料棒が破損して大気中にプルトニュームが放出されたのは間違いない。
 長崎に落された原爆はプルトニュームの核分裂によるものである。
 今まで、その危険性が再三指摘されているのに国民─特に周辺住民を欺いて
 今日の危険な領域に立ち至ったのは残念である。
 今の危機はソ連のチェルノブイリ事故に匹敵する段階に近づきつつある。
 これらの危険性については、つとに内橋克人などが警告してきたところである。
 原発の危険性に頬かむりをして原発建設を推し進めた政府、御用学者、経営者、
 マスコミの責任を声を大にして申上げたい。
 政府は速やかに事態を終息させるために、また周辺住民の避難に全力をあげよ。
 このままでは、一帯の農、畜産物、魚などが食べられなくなってしまうだろう。
 「大したことはない」と言われているうちに事態は益々ひどくなってきたではないか。
 一帯の住民の「健康被害」が出てからでは手遅れである。
 福島原発は、もちろん「廃炉」だ。
 周辺住民の皆さんも重大な危険を認識して速やかに行動されたい。
 情報も良いか判断する力を持ちたい。
 安斎育郎などは原子力の専門家でありながら一貫して平和を追求してきた人なので信頼できる。
 つい昨日あたりからNHKラジオに呼ばれるようになってきた。


枝野幸男官房長官は29日、福島第1原発の敷地内でプルトニウムが検出されたことをめぐり「燃料棒がある程度溶けたことを立証するもので、
とても深刻な事態だ」と発表した。
21日と22日に採取した原発敷地内5カ所の土壌から、プルトニウム238、239、240などが検出された。
プルトニウム238の濃度は土壌1キロ当たり0.54ベクレルと、通常日本で検出される濃度の約3.6倍だった。

 原発監督機関の原子炉安全・保安院の西山英彦審議官はこの日、毎日新聞とのインタビューで
「放射性物質が露出しないよう、福島第1原発にあるべき5重の壁が破損したということを意味する」と話した。
5重の壁とは、燃料棒、覆管、圧力容器、格納容器、格納庫(建屋)のことを指す。

 日本政府と東京電力は深刻な状況を認めている。「現段階では人体に影響を与えない程度の微量だ」としながらも、かなり緊張した状態だ。
調査時点が1週間前のため、新たに調査を行えば検出量はさらに増加する可能性が高いためだ。

 プルトニウム238の半減期は88年で、239の半減期は2万4000年だ。人体に蓄積されると肺がんなどを誘発する。
京都大学原子炉実験所の小出裕章助教は「プルトニウムが検出されたということは、炉心の状態が非常に悪化したという証拠だ」と話した。
---------------------------------------------------------------------
原子力発電
出典: フリー百科事典『ウィキペディア(Wikipedia)』

原子力発電の施設に関しては原子力発電所を参照
核分裂反応を安全に維持する装置については原子炉を参照
核融合炉に関しては核融合炉を参照
軍用の推進機関としての原子炉については原子力空母、原子力潜水艦、原子力船を参照
宇宙での核反応を使った発電については原子力電池を参照
原子力関連の事故に関しては原子力事故を参照

概要
原理
原子力とは、原子核反応により得られるエネルギー、核エネルギーのことである。原子核反応には核分裂反応と核融合反応の2種類の反応があるが、現在原子力エネルギーとして実用化されているのは核分裂反応のみであり、そのため、単に「原子力発電」と言う場合には核分裂反応のエネルギーを熱エネルギー、運動エネルギーへと変換し、発電する方法を指す。

原子力発電には、大きく分けて3つの要素が必要である。核分裂反応を起こす元となる核燃料、核分裂反応を起こさせる原子炉、そして原子炉から取りだした熱で発電を行う発電施設である。

核分裂反応 詳細は「核分裂反応」を参照

核分裂反応とは、何らかの要因で中性子を捕捉した原子が2つないしそれ以上に分裂することをいう。このとき、その原子は中性子を放出することがある。そして放出された中性子がまた別の原子に捕捉され、さらにまたその原子が分裂を起こし、そしてそこからまた中性子が放出され、という連鎖反応が起きることがある。こうした連鎖反応により核分裂反応が持続している状態を臨界と呼ぶ。原子炉において初めて臨界が達成された時を初臨界といい、これはその原子炉が実際に稼働した最初の時とされる。

基本要素
核燃料
燃料ペレット詳細は「核燃料」を参照

原子には、中性子を捕捉して分裂する物と、捕捉しても分裂しない物があることが知られている。分裂する物として代表的なものは、ウランの放射性同位体であるウラン235、プルトニウム239である。しかし、プルトニウム239は天然にはごく微量しか存在しないため、核燃料としてはウラン235が使われる。このウラン235は天然鉱石である閃ウラン鉱に含まれる。しかしこの中にはウラン235が0.7%程度しか含まれていないため、21世紀初頭現在の一般的な原子炉で核燃料として利用するには、ウラン濃縮工程とよばれるウラン235の濃縮作業が必要となる。

また、分裂しない物としては、ウラン238が知られている。ウラン238は、中性子を捕捉することによってプルトニウム239に転換でき、これを核燃料として使用することができる。

原子炉
原子力発電における核分裂反応において必要なことは、核分裂反応を制御することである。核分裂反応の制御とは、開始、持続(臨界)、そして停止である。原子力発電においては、これらが自由に制御されなければならない。この、核分裂反応を制御できるということが原子力発電と原子爆弾を分ける大きな違いである。そして核分裂反応を制御する装置が原子炉である。

原子力発電に使用される原子炉には様々な種類がある。原子炉の種類は、減速材と呼ばれる中性子の制御を行う素材と、冷却材と呼ばれる原子炉から熱を運び出す素材の2つによって分類される。減速材としては、黒鉛、重水、軽水[注釈 1]などがある。冷却材としては、炭酸ガスや窒素ガスなどのガス、重水、軽水などがある。現在の日本の商用原子力発電では、減速材、冷却材のどちらとも軽水を使用している。これは軽水炉と呼ばれる。

核分裂炉を、用いる減速材で分類すると以下のように分けられる。

軽水炉
加圧水型原子炉 - 沸騰水型原子炉
重水炉
CANDU炉 - 新型転換炉 - ガス冷却重水炉
黒鉛炉
黒鉛減速ガス冷却炉 - 黒鉛減速沸騰軽水圧力管型原子炉 - 溶融塩原子炉
高速炉
高速増殖炉

発電施設

加圧水型原子炉原子力発電は、核分裂反応で発生する熱を使って水を沸騰させ、その蒸気で蒸気タービンを回すことで発電機を回して発電する。一方、火力発電では石油や石炭、液化天然ガスといった化石燃料を燃やして熱を作り出して蒸気を発生させ、発電を行っている。つまり、原子力発電と火力発電では、発生した蒸気でタービンを回し発電機で発電するという点で、同じ仕組みを利用しているといえる。

原子力発電所の象徴として、冷却塔の写真が使われることが多いが、これは発電に使用できなかった余りの熱を外部へ水蒸気として排出するためのものである。蒸気による発電では、熱力学第二法則により、発生した熱のすべてを電気エネルギーに変換することは出来ず、必ずある程度の廃熱が発生してしまうことが分かっている。冷却塔はその廃熱を処理するためのものである[注釈 2]。一部の原子力発電所は海や川のそばに建設し、熱を温水の形で海や川に排出することで冷却塔を省いている。日本国内の原子力発電所は全てこのようにして冷却塔の必要がない構造となっている。

施設構成
加圧水型原子炉の模式図
Schema_Druckwasserreaktor.png

1. 原子炉圧力容器
2. 燃料棒
3. 制御棒
4. 制御棒駆動装置
5. 加圧器
6. 蒸気発生器
7. 低温の二次冷却水
8. 高圧蒸気タービン
9. 低圧蒸気タービン
10. タービン発電機
11. 励磁機
12. 復水器
13. 冷却水
14. イオン交換器
15. 二次冷却水循環ポンプ
16. 冷却水供給ポンプ
17. 一次冷却水循環ポンプ
18. 電力配線
19. 蒸気
20. 原子炉格納容器

汽力発電の一種である原子力発電も原理はランキンサイクルであるため、作動流体である冷却材のサイクルを形成する原子炉、蒸気タービン、復水器、ポンプが中心となる。

またこの他にも補助的な役割を果たす多くの機器や設備が必要となる。

軽水炉を使用する原子力発電所の敷地内における施設、機器の構成の概要は以下のようになっている。

原子炉建屋
原子炉格納容器
燃料交換機
燃料貯蔵プール
原子炉圧力容器
制御棒
燃料集合体
燃料被覆管
燃料ペレット
原子炉補助建屋
放射性廃棄物処理設備
中央制御室
タービン建屋
蒸気タービン
タービン発電機
変圧器
送電線
非常時発電機
固体廃棄物貯蔵庫
取水口
原子力発電プラントで特徴的な設備は気体、液体、固体の放射性廃棄物処理設備や放射線を検出するための環境センサー類、放射線管理区域の出入りを管理する設備である。

火力発電所との差異
横浜火力発電所
タービン発電機一般的には、分かりやすく「原子力発電所でも火力発電所でも、蒸気タービンによる発電方式ということでは同じである」と説明されることがある。しかし、厳密には以下の点で違いがある。

蒸気
タービンを回す蒸気が原子力発電所では約284度、6.8MPa[1]であり、石炭火力発電所の蒸気の約600度、25MPa[1]よりも温度、圧力が低く設計されている。この理由は、核燃料棒の被覆に使われているジルコニウムが比較的高温に弱いために[2]一次冷却水を高温には出来ないためである。また、火力発電所では超臨界流体である超臨界蒸気が使用されている。超臨界流体とは、液体の性質と気体の性質を持った非常に濃厚な蒸気であり、熱を効率良く運ぶことが出来るが高温高圧状態が必要なため、原子力発電ではこれを利用することは現在は出来ない。これらの理由から一般的な火力発電所の熱効率は約47%程度[3]であるのに対し、21世紀初頭現在の原子力発電における熱効率は約30%程度である[4]。尚、冷却材に超臨界流体である超臨界圧軽水を用いた超臨界圧軽水冷却炉が現在研究中であり、これを原子力発電に用いれば熱効率は45%程度まで上昇すると考えられている[5]。

タービン
原子力用タービンの回転数は1500rpm又は1800rpmであるが、火力用タービンは3000rpm又は3600rpmである[6]。

歴史
アメリカ、EBR-I 世界初の原子力発電を行った発電所
アメリカ、シッピングポート原子力発電所
世界の原子力発電の推移グラフ。上段 : 発電容量、下段 : 発電所数
アメリカ、スリーマイル島原子力発電所
日本、東海発電所史上初の原子力発電は、1951年、アメリカ合衆国の高速増殖炉EBR-Iで行われたものである[7]。この時に発電された量は、200Wの電球を4個灯しただけであった[8]。

本格的に原子力発電への道が開かれることとなったのは、1953年12月8日にドワイト・D・アイゼンハワー大統領が国連総会で行った原子力平和利用に関する提案、「Atoms for Peace」がその起点とされている。これは、従来核兵器だけに使用されてきた核の力を、原子力発電という平和利用に向けるという大きな政策転換であった。アメリカではこの政策転換を受け、1954年に原子力エネルギー法が修正され、アメリカ原子力委員会 が原子力開発の推進と規制の両方を担当することとなった[9]。

1954年6月27日、ソビエト連邦のモスクワ郊外オブニンスクにあるオブニンスク原子力発電所が、実用としては世界初の原子力発電所として発電を開始し[10]、5MWの発電を行った。

1955年に、原子力平和利用国際会議が開催され、原子力技術の発展について討議した[11]。

1956年に、世界最初の商用原子力発電所としてイギリスセラフィールドのコルダーホール発電所が完成した[12]。出力は50MWであった。アメリカでの最初の商用原子力発電所は、1957年12月にペンシルベニアに完成したシッピングポート原子力発電所である。

1957年にはEEC諸国によりユーラトム が発足した。同年に国際原子力機関 (IAEA) も発足した[12]。

原子力発電初期のキャッチフレーズは、「Too cheap To meter」であった。これは、「原子力発電で作った電気はあまりに安すぎるので、計量する必要がないほどだ」、という意味である[13]。原子力発電はそれだけ安く大量に電気を供給できるものと期待されていた。しかし現実はそうではなかった。バックアップ装置の増設等により、建設費が高騰したのだ[13]。原子力発電は他の発電に比べて設備費の割合が非常に大きいため、建設費が高騰するとその影響がより大きくなってしまった。

1974年には、アメリカ原子力委員会 (AEC) が推進と規制の両方を担当する事への批判から、AECを廃止し、推進をエネルギー研究開発管理部 (ERDA)、規制を原子力規制委員会 (NRC) に分割することとなった[9]。

1977年、アメリカでは民主党のジミー・カーター政権が誕生した。カーター政権は1977年4月に核拡散防止を目的としてプルトニウムの利用を凍結する政策を発表した。これによりアメリカでは高速増殖炉の開発が中止され、核燃料サイクルが中止された。これ以降アメリカでは核燃料は再処理されず、基本的にワンススルー利用されるものとなった[14]。

1979年3月28日、スリーマイル島原子力発電所事故が発生した。この事故は、世界の原子力業界に大きな打撃を与えた。特にアメリカ国内では先述した建設費用の高騰と合わせる形での事件であったため、原子力発電の新規受注は途絶えた[15]。

続いて1986年には人類史上最悪の原子力事故であるチェルノブイリ原子力発電所事故が発生。これにより原子力のリスクに対する大衆の認識は大幅に上がることになった[16]。

日本
1945年8月、第二次世界大戦敗戦後、日本では連合国から原子力に関する研究が全面的に禁止された[注釈 3]。しかし1952年4月にサンフランシスコ講和条約が発効したため、原子力研究は解禁されることとなった[17]。

日本における原子力発電は、1954年3月に当時改進党に所属していた中曽根康弘、稲葉修、齋藤憲三、川崎秀二により原子力研究開発予算が国会に提出されたことがその起点とされている。この時の予算2億3500万円は、ウラン235にちなんだものであった[18]。

1955年12月19日に原子力基本法が成立し、原子力利用の大綱が定められた。この時に定められた方針が「民主・自主・公開」[注釈 4]の「原子力三原則」であった[19]。そして基本法成立を受けて1956年1月1日に原子力委員会が設置された[20]。初代の委員長は読売新聞社社主でもあった正力松太郎である[21]。正力は翌1957年4月29日に原子力平和利用懇談会を立ち上げ、さらに同年5月19日に発足した科学技術庁の初代長官となり、原子力の日本への導入に大きな影響力を発揮した。このことから正力は、日本の「原子力の父」とも呼ばれている。

1956年6月に日本原子力研究所、現、独立行政法人日本原子力研究開発機構が特殊法人として設立され、研究所が茨城県東海村に設置された[22]。これ以降東海村は日本の原子力研究の中心地となっていく。

1957年11月1日には、電気事業連合会加盟の9電力会社[注釈 5]および電源開発の出資により日本原子力発電株式会社が設立された[23]。

日本で最初の原子力発電が行われたのは1963年10月26日で、東海村に建設された実験炉であるJPDRが初発電を行った。これを記念して毎年10月26日は原子力の日となっている[24]。

日本に初めて設立された商用原子力発電所は同じく東海村に建設された東海発電所であり、運営主体は日本原子力発電である。原子炉の種類は世界最初に実用化されたイギリス製の黒鉛減速炭酸ガス冷却型原子炉であった。しかし経済性等の問題[25]によりガス冷却炉はこれ1基にとどまり、後に導入される商用発電炉はすべて軽水炉であった。

略年表
1895年 - 放射線の発見[7]。
1939年 - 原子核分裂の発見[7]。
1951年 - 世界初の原子力発電がEBR-Iで実施[7]。
1953年 - Atoms for Peace提案[12]。
1954年 - ソビエト連邦のオブニンスク原子力発電所発電開始[10]。
1955年 - 原子力基本法が成立[26]。
1956年 - 初の商用原子力発電所、英国のコルダーホール発電所運転開始[12]。
1957年 - 国際原子力機関発足[12]。
1963年 - 日本初の原子力発電実施[12]。
1966年 - 日本初の原子力発電所、東海発電所完成[7]。
1974年 - アメリカ原子力委員会分割[9]。
1979年 - スリーマイル島原子力発電所事故発生[16]。
1986年 - チェルノブイリ原子力発電所事故発生[16]。
1999年 - 東海村JCO臨界事故発生[27]。
2006年 - 国際原子力パートナーシップ発表[28]。

原子力発電の現状 : 2009年
■青 : 原子力発電を実施中で新規建設も実行中の国。
■水 : 原子力発電を実施中で新規建設を計画中の国。
■緑 : 原子力発電を実施していないが新規建設中の国。
■薄緑 : 原子力発電を実施していないが新規計画中の国。
■橙 : 原子力発電を実施中。
■赤 : 原子力発電を実施中だが段階的に廃止予定の国。
■黒 : 商用原子力発電が認可されていない国。
■灰 : 原子力発電を実施していない国。
各国の原子力発電比率2008年の実績では、原子力発電は世界の全発電量の内、約15%を占めている[29]。また世界30か国で432基の原子力動力炉が運転されている[29]。

以下に各地域の原子力発電の現状を記載する。

米国
米国は最も多くの量の原子力発電を行っており[29]、原子力発電によってアメリカ国内の総電力の20%を賄っている[30]。

中南米
2005年12月の時点で中南米で原子炉を運転している国はメキシコ、アルゼンチン、ブラジルの3か国である。尚、キューバは1983年に原子力発電所の建設を開始した事があったが資金面の影響により1992年に工事を中断し現在に至っている[31]。

ロシア
ロシアで運転している原子炉は計27基2.319万kW[32]、2005年の発電量に占める原子力発電の割合は15.8%[33]。ロシアでの問題は老朽化である。運転中の原子炉の内、6割が老朽化していると言われている[34]。

欧州
欧州全体での発電量に占める原子力発電の割合は2009年の時点で28%[35]。EUでの原子力政策はEU加盟の各国によって違いがあり、ノルウェー、アイスランド、ポーランド、イタリア等の国では原子力発電は行われていない[35]。反対にフランスは発電量に占める原子力発電の割合が世界で最も高い国である。59基もの原発が稼動しており[35]、総電力の約80%もの電気エネルギーを原子炉から得ている[30]。2007年には国内純発電量の12.4%に相当する電力を輸出している[36]。

また、ベルギーでは2004年の時点で7基の原子炉を使用しているが、既に2003年1月に脱原子力法が議会で可決、成立しており、2025年までに原発を廃止するとしている[37]。

アフリカ
アフリカ地域の1人あたりの電力使用量は先進国と比べるとまだまだ低い水準であり[38]、原子力発電を実施している国は南アフリカ共和国ただ1国である。実施は1984年。発電量に占める原子力発電の割合は2005年の実績では5.5%であった[39]。その他、エジプト、ケニア、ナイジェリアといった国々が2011年2月時点では原子力発電の導入を検討しているとされている[40]。

中東
中東地域ではイランのブシェール原子力発電所が唯一の稼動中の原子力発電所である[41]。しかし、トルコ[42]、UAE[43]で原子力発電所の新規建設が決定されている。

中国
中華人民共和国における原子力発電は1994年に開始されたばかりで後発国といえる。2003年の発電量に占める原子力発電の割合は1.5%となっている[44]。

日本
日本の原子力発電は、経済性や安全性から軽水炉の2つのタイプ、沸騰水型原子炉 (BWR) と加圧水型原子炉 (PWR) が使われている。また、需要に合わせた電気出力の増減、負荷追従運転は行わず、常時一定の電力供給を専門としている。

2010年現在、日本における電力量の約23%を原子力が担っている[30]。一次エネルギーとしての原子力エネルギーは電力事業のみであり、日本での一次エネルギーに対する割合は2002年の時点で15%程度となっている[45]。

また、2010年3月に営業運転期間が40年に達した敦賀発電所1号機をはじめ、長期運転を行う原子炉が増加する見込みである事から、これらの安全性の維持が課題となっている[46]。

発電比率
日本の各電力会社での全発電量に占める原子力発電比率は以下の通り。

北海道電力 : 約40%[47]
東北電力 : 約16%[48]
東京電力 : 約23%[49]
中部電力 : 約15%[50]
北陸電力 : 約33%[51]
関西電力 : 約48%[52]
中国電力 : 約8%[53]
四国電力 : 約38%[54]
九州電力 : 約41%[55]
沖縄電力 : 0%[56]
世界の原子力発電所開発状況
詳細は「原子力発電所」を参照

31か国中上位15か国を掲載。2007年のデータ[32]。

アメリカ : 104基 10,606万kW
フランス : 59基 6,602万kW
日本 : 55基 4,958万kW
ロシア : 27基 2,319万kW
ドイツ : 17基 2,137万kW
大韓民国 : 20基 1,772万kW
ウクライナ : 15基 1,384万kW
カナダ : 18基 1,343万kW
イギリス : 19基 1,195万kW
スウェーデン : 10基 938万kW
中国 : 11基 912万kW
スペイン : 8基 773万kW
ベルギー : 7基 612万kW
台湾 : 6基 516万kW
インド : 17基 412万kW
世界合計 : 435基 39,224万kW

今後
核融合の実験施設である国際熱核融合実験炉の炉心モデル
第四世代原子炉に挙げられる高速増殖炉の「もんじゅ」
核燃料サイクルの概念図。1. 閃ウラン鉱の採掘、2. 発電所から再処理工場へ、3. 地層処分、4. 発電所の燃料へ再加工現在、世界的には2つの流れがある。すなわちエネルギー源としての原子力の利用を削減、廃止していこうとする流れと、エネルギー源としての原子力の利用を推進していこうとする流れである。

原子力撤廃 詳細は「原子力撤廃」を参照

この立場に立つ主な国としてドイツがある[57]。また、ベルギーも2003年1月に脱原子力法が成立し、2004年現在7基ある原子炉を2025年までに全廃することになっている[37]。

スウェーデン、イギリス、イタリアは脱原子力を過去に目指していたものの、現在では地球温暖化等の問題によりその政策を見直した[58]。

原子力推進 詳細は「国際原子力パートナーシップ」を参照

一方、アメリカは2006年に輸入化石燃料への依存量を減らすなど幾つかの目的を持つ新しいエネルギー政策「国際原子力パートナーシップ」を発表。日本、フランス、中華人民共和国、ロシアなどとの協力によってこの政策を推進してゆくことを発表した。

2007年にはオーストラリア、ブルガリア、ガーナ、ハンガリー、ヨルダン、カザフスタン、リトアニア、ポーランド、ルーマニア、スロヴェニア、ウクライナ、イタリア、カナダ、大韓民国がこの計画への参加を表明している。

この計画の中心となるのは核燃料サイクルと超臨界圧軽水冷却炉、ナトリウム冷却高速炉、鉛合金冷却高速炉、超高温ガス炉、ガス冷却高速炉、溶融塩原子炉といった第4世代原子炉[59]である。また、本質的に安全な原子力発電プラントや核融合炉の開発、海水淡水化、暖房供給への利用等の研究が現在も世界各国で続けられている。また、トリウム232をウラン233へと転換させ、核燃料として利用する、トリウムサイクルの実用化に向けた研究も行われている[60]。

また2008年7月の洞爺湖サミットに際して行われたG8エネルギー大臣会合関連ではエネルギー供給源の多様化等の観点から、原子力発電の重要性を確認した[61]。

2010年6月に2010年日本APECの一貫として福井市で開かれたエネルギー担当相会合 (EMM) では、域内での温室効果ガス排出削減や省エネ製品の普及などで協力することを盛り込んだ議長声明を採択した。同声明は「エネルギー安全保障に向けた低炭素化対策に関する福井宣言」と題される。声明ではAPECとして初めて、原子力発電所が温暖化対策に貢献することを認め、建設促進を盛り込んだ[62]。

国際原子力パートナーシップ参加国以外では、アラブ首長国連邦 (UAE)[63]やベトナム[64]などが原子力発電所の建設計画を持っている。UAEは2020年頃の稼動開始を目指している他、ベトナムは2030年までに原子炉14基を稼働させる計画を明らかにしている[65]。

日本
日本の原子力政策は、原子力設備の更新が予想される2030年以後も原子力発電が現在の総発電量の3割程度という水準か、それ以上の割合を占める事が適切であるとしている[66]。

また、増え続ける使用済み核燃料に含まれるプルトニウムの処分方法とウラニウムの輸入量を減らすための解決策として、高速増殖炉計画が推進され、2010年現在は原型炉のもんじゅが試験を繰り返し行っている。平行して核燃料サイクル政策としてMOX燃料によるプルサーマル計画が進められている。

原子力産業
エネルギー安全保障問題、地球環境問題等の影響で世界的に原子力への期待が高まっている。そのため、原子力エネルギー政策の国際的な協調が行われるようになってきており、アレヴァと三菱重工、ウエスチングハウスと東芝、ゼネラルエレクトリックと日立製作所が提携するなど原子力産業界に変化が見られる[67]。

日本では、国外の売り込みにおいてUAEで韓国勢に[63]、ベトナムではロシア勢に[64]それぞれ敗れるなど遅れが目立ち始めたため、2010年10月には東芝・日立・三菱重工に加え東京電力などの電力会社を交えた合弁会社として国際原子力開発を設立し、海外向けの受注活動で相互協力する姿勢を示している[68]。

諸議論
利点 現行の原子力発電の利点として、以下の諸点が挙げられている。

発電時に地球温暖化の原因とされる二酸化炭素を排出しない[69]。
中東に大きく依存するガス、石油と違い、ウラン供給国は政情の安定した国が多い[70]。
酸性雨や光化学スモッグなど大気汚染の原因とされる窒素酸化物や硫黄酸化物を排出しない[71]。
発電コストに占める燃料費の割合が他の発電方法に比べ極めて低いため、燃料価格が上昇してもトータルの発電コストが上昇しにくい[72]。
核燃料の交換頻度が低い事や核燃料物質の国際的な入手ルート・価格がほぼ確立し安定している為に、化石燃料型の発電に比べて相対的に安定した電力供給が期待できる[73]。
発電量当りの単価が安いため経済性が高い[74]。
化石燃料資源の乏しい国でも比較的少量の核燃料を繰り返し使用する再処理技術、核燃料サイクルの確立により核燃料物質の入手に関わる制約が圧倒的に緩和できる[75]。
技術力がある、と国際的にアピールできる。
優秀な原発技術は海外へ売り込むことができる[76]。
海水からのウラン採取が実現すれば燃料はさらに豊富となる。尚、採取技術は既に存在している[77]。
日本では、原子力発電所ができると地元には一定の雇用が期待できるほか、電源立地地域対策交付金などの電源三法交付金、固定資産税、法人税などの税収も確保できる[78]。

問題点
現行の原子力発電には以下の問題点が指摘されている。

原子力発電所の稼動中に発生する放射線への対処が必要となる。
原子炉の運転に伴い中性子線やガンマ線が発生するため、発電施設で働く作業者が過度に被ばくしないよう、遮蔽を考慮した設計にする、管理区域を設けるなど特別の対応をする必要がある[79]。
重大事故が発生すると周辺環境に多大な被害を与え、その影響は地球規模に及ぶ。国土が狭い日本において、一旦チェルノブイリ級の事故が発生した場合、放射性物質による国土の汚染は日本国内の非常に広範囲に及ぶ[80]。
放射性物質であり生物化学的な毒性もある放射性廃棄物が発生する[81]。
放射性廃棄物の処分問題
数十億年の長い半減期を持つ高レベル放射性廃棄物に対しては、地下深くに埋設して処分する深地層処分が検討されている。しかし、放射性物質の漏洩のリスクなどから、地域住民の多くがその近隣での処分に反対するため、広大な国土を持つアメリカ合衆国やロシアのような例を除き、多くの国で地下埋設の処分地確保に問題を抱えている[82]。
原子炉の解体処分にともない、低レベル放射性廃棄物に相当する廃棄物が大量に発生するため、これらの処分方法が課題となっている[83]。
日本では高レベル放射性廃棄物の最終処分地が決定していない[84]。
発電施設および核廃棄物へのテロリズムの危険[85]。
ウラン資源の可採埋蔵量に由来する資源枯渇問題
地殻中のウラン235のみの利用を考えた場合、資源がそれほど豊富なわけではない[86]。
軍事転用の問題
天然ウランから核燃料を作る工程で発生する劣化ウランは劣化ウラン弾として使用可能[87]。
使用済み核燃料に含まれるプルトニウムは原爆などに転用することが可能。ただし、抽出には非常に高い技術と専用の設備が必要である[88]。
通常停止の場合、停止までの所要時間が長い[89]。
日本においては負荷追従運転を基本的には行っていない[90]。
周辺整備などに多大なコストがかかる
対応する揚水発電所の建設コスト[91]。
日本において地方に建設されることによる弊害。
電力の生産地と消費地が離れて存在するため、長距離送電時の電力ロスが大きい、送電網のコスト、また送電線事故での停電リスクが増大する[92]。
海水を使用する場合、立地場所が限定される[93]。
海岸沿いに作られると、津波の被害を受ける可能性がある[94]。
後進国や発展途上国で原発が建設された場合、安全性が懸念される[95]。
日本では、将来の原子力発電を担ってくれる技術者が減少傾向にある[96]。
日本では原子力関係の学科が減少傾向にある[97]。

事故
チェルノブイリ原子力発電所4号炉
福島第一原子力発電所詳細は「原子力事故」を参照

原子力事故
臨界状態は、核分裂反応が連鎖している状態であるが、仮にこの連鎖が異常に高い効率で核分裂反応が進むとすぐに核燃料内部が中性子であふれ、出来るだけ速やかに全てのウラン235の原子核が核分裂する方向へと働いてしまう。制御を超えて一度に進む核分裂反応は、エネルギーの発生も一度に起こり、発生する高熱と強力な放射線があたりに放たれてしまう。これが核爆発である。ただし現在の発電用原子炉で核爆発が起きることは全く無い[98]とされ、起こり得る事故は以下のようなものとなる。

炉心溶融 詳細は「炉心溶融」を参照

原子力発電所で起こり得る最悪の事故としては炉心溶融が挙げられる。これは、原子炉の炉心冷却が不十分な状態が続いた結果、若しくは炉心の異常な出力上昇の結果、炉心温度が上昇して溶融に至る事故である[99]。最悪の場合は水素爆発等を誘発し、原子炉圧力容器、原子炉格納容器、原子炉建屋等の構造物を破壊する事で、原子力発電所の外に放射性物質を大量に拡散させる恐れもある[100]。

炉心溶融を防止するために現在は冷却材喪失事故の防止策として非常用炉心冷却装置等の設置[101]、また異常な出力上昇の防止策として原子炉に自己制御性を持たせている[102]。

しかし、現在までに3件の事例が記録されており、最も深刻なチェルノブイリ原子力発電所事故では広範囲に放射性物質を拡散させた。

臨界事故
臨界事故とは、制御棒の予期せぬ引き抜け等により想定外の臨界状態になることである。1978年11月2日に福島第一原子力発電所3号機で発生した事例がある。

国際原子力事象評価尺度
原子力発電所の事故、故障は国際原子力事象評価尺度に照らされ、0 - 7のレベルに分けられることになっている。放射線被曝を伴わない事故の場合でも安全管理不適切と判断されレベル1以上になることがある[103]。

データ
発電コスト 経済産業省による試算 [編集]1999年に通商産業省資源エネルギー庁が発表した試算によれば、1kWhあたりの発電コストは以下の通り[104]。

原子力 5.9円
LNG火力 6.4円
石炭火力 6.5円
石油火力10.2円
水力 13.6円

尚、この試算は漁業補償金や原子力に特有な再処理費用、1kWhあたり1円 - 2円の燃料費等のバックエンドコストを含んだ物だが、電源三法による地元交付金等は含まれていない。原子力発電コストは燃料費の割合が低いが故に、燃料費の高騰を原因とする値段の高騰を招きにくい特性がある。

原子力資料情報室による試算 [編集]2005年6月に特定非営利活動法人原子力資料情報室が発表した試算によれば、運転年数40年の場合、1kWhあたりの発電コストは以下の通り[105]。

原子力 5.73円
LNG火力 4.88円
石炭火力 4.93円
石油火力 8.76円
水力 7.20円
二酸化炭素排出量 [編集]温室効果の原因となる二酸化炭素の排出量が少ないことは、原子力発電の利点の一つとされている。電力中央研究所が平成12年に発表した試算によれば、原子力をはじめとする各種発電方式について、発電所の建設から廃止までの発電量と二酸化炭素排出量を考慮した、1kWhあたりの二酸化炭素排出量は以下の通り[106]。

原子力 22グラム
水力 11グラム
LNG火力 608グラム
石油火力 742グラム
石炭火力 975グラム
原子力発電では核分裂反応に起因する二酸化炭素の排出は全くないが、発電所の建設、運用、廃止や燃料の生産、輸送、廃棄物の処分等に起因する二酸化炭素の排出も上記の試算には含まれているため、若干の排出が見られる。この点は水力発電も同様である。

発電所建設費の例
原子力 北海道電力泊発電所3号機 約2,926億円 91.2万kW 平成21年12月営業運転開始[107][108]
揚水型水力 東京電力葛野川発電所 約3,800億円 160万kW 平成11年12月3日1号機営業運転開始[109]
天然ガス 電源開発株式会社市原発電所 約100億円 11万kW 平成16年10月営業運転開始[110]
石炭 北陸電力敦賀火力発電所2号機 1,275億円程度 70万kW 平成12年9月営業運転開始[111]
風力 電源開発株式会社郡山布引高原風力発電所 約120億円 6.6万kW 平成19年2月 営業運転開始[112]
注釈
^ 原子炉においては、重水と区別するため、一般的な水は軽水と呼ばれる。
^ 同様に、廃熱のための施設は火力発電所でも必要となる。
^ 連合国軍最高司令官総司令部指令第三号第八項『日本帝国政府はウランからウラン235を大量分離することを目的とする、また他のいかなる不安定元素についてもその大量分離を目的とする、一切の研究開発作業を禁止すべきである』
^ 原子力基本法 第2条-原子力開発利用の基本方針
平和の目的に限り、安全の確保を旨として、民主的な運営の下に、自主的にこれを行うものとし、その成果を公開し、進んで国際協力に資するものとする。
^ 1957年当時。現在は沖縄電力も含めて10社。ただし現在でも沖縄電力は日本原子力発電に出資していない。
出典
^ a b ターボ機械協会 蒸気タービンとは? - 2010年12月8日閲覧
^ CiNii 国立情報学研究所 ジルコニウム合金の圧縮クリープ - 2010年11月3日閲覧
^ 東京電力 火力発電熱効率の向上 - 2010年10月30日閲覧
^ 東芝 原子力事業部 ABWR 改良型沸騰水型原子炉 - 2010年2月8日閲覧
^ ATOMICA 超臨界圧軽水冷却炉 - 2011年2月8日閲覧
^ 東芝原子力事業部 模型で学ぶ原子力 - 2010年10月31日閲覧
^ a b c d e 神戸大学環境サークル 原子力発電の歴史 - 2010年11月6日閲覧
^ 京都大学原子炉実験所 原子力安全研究グループ 高速増殖炉 (PDF) - 2010年11月27日閲覧
^ a b c 国立国会図書館 アメリカの原子力安全規制機関 (PDF) - 2010年12月3日
^ a b ATOMICA 旧ソ連の原子力研究施設 - 2010年11月27日閲覧
^ 内閣府原子力委員会 §1ジュネーブ会議 - 2010年12月3日
^ a b c d e f 大阪大学大学院理学研究科素粒子論研究室 エネルギー問題講義 (PDF) - 2010年11月6日閲覧
^ a b 科学と技術の諸相 §3.原発の経済性・安全性 - 2010年12月3日閲覧
^ ATOMICA 外国における高レベル放射性廃棄物の処分 - 2010年12月3日閲覧
^ ATOMICA アメリカの電気事業および原子力産業 - 2010年12月3日閲覧
^ a b c ATOMICA チェルノブイリをめぐる放射線影響問題 - 2010年11月6日閲覧
^ 日本大学理工学部 物理学科 受験生の皆様へ - 2011年1月20日閲覧
^ 土井淑平 アメリカの核開発 - 2010年11月14日閲覧
^ 原子力安全・保安院 原子力の三原則 - 2011年1月20日閲覧
^ 原子力委員会 原子力委員会の役割 - 2011年1月20日閲覧
^ 原子力委員会 原子力委員会の性格と構成 - 2011年1月20日閲覧
^ 日本原子力研究所 沿革 - 2011年1月20日閲覧
^ 日本原子力発電株式会社 沿革 - 2011年1月20日閲覧
^ 原子力委員会 原子力知識の普及啓発 - 2011年1月20日閲覧
^ ATOMICA 黒鉛減速炭酸ガス冷却型原子炉 - 2010年11月14日閲覧
^ 電気事業連合会 原子力基本法 - 2010年11月6日閲覧
^ よくわかる原子力 東海村JCO 臨界事故 - 2010年12月9日閲覧
^ 外務省 国際原子力エネルギー・パートナーシップ - 2010年11月6日閲覧
^ a b c 社団法人日本電機工業会 世界における原子力発電の動向 (PDF) - 2010年11月14日閲覧
^ a b c 電気事業連合会 発電設備と発電電力量 - 2010年11月14日閲覧
^ ATOMICA 世界の原子力発電の動向・中南米 - 2010年12月14日閲覧
^ a b 日本原子力産業協会 世界の原子量発電の状況 (PDF) - 2010年11月6日閲覧
^ 日本原子力産業協会 世界の原子力発電の概要 (PDF) - 2010年12月10日閲覧
^ ATOMICA 世界の原子力発電開発の動向・CIS - 2010年12月10日閲覧
^ a b c 国際協力銀行 欧州における原発の現状と今後の見通し (PDF) - 2010年11月14日閲覧
^ 在日フランス大使館 エネルギー - 2010年11月14日閲覧
^ a b ATOMICA ベルギーの原子力政策・計画 - 2011年3月26日閲覧
^ 資源エネルギー庁 エネルギー白書2007年版 - 2011年3月26日閲覧
^ ATOMICA 原子力発電が総発電電力量に占める割合(日、米、英、仏、独、ロを除いた国々) - 2011年2月8日閲覧
^ SourseJuice アフリカ諸国の原子力発電の急増興味 - 2011年2月8日閲覧
^ サーチナニュース イラン初の原子力発電所、試験的な稼動を開始 - 2010年12月28日閲覧
^ 産経ニュース 露がトルコで原発初受注 露大統領中東歴訪 - 2010年12月28日閲覧
^ ロイター UAE原発建設、韓国企業連合が受注 - 2010年12月28日閲覧
^ 日本エネルギー経済研究所 中国における原子力発電開発の現状と中長期展望 (PDF) - 2010年12月10日閲覧
^ 三菱重工 原子力事業部 原子力の必要性 - 2010年11月26日閲覧
^ 産経ニュース 課題残し日本最長「50年運転」関電美浜原発1号機 28日に40年 - 2011年2月14日閲覧
^ 2009年産経新聞 泊原発3号機が営業運転開始 北電の原子力割合40%に - 2010年12月8日閲覧
^ 2009年東北電力 電力供給 (PDF) - 2010年12月8日閲覧
^ 2008年東京電力 電気のどのくらいが原子力発電なの? - 2010年12月8日閲覧
^ 2010年毎日新聞 中電 : 原発新設へ 原子力比率50%に引き上げ - 2010年12月8日閲覧
^ 2009年北陸電力 原子力発電の推進 - 2010年12月8日閲覧
^ 2010年関西電力 関西電力の発電電力量比 - 2010年12月8日閲覧
^ 2009年中国電力 建設計画 - 2010年12月8日閲覧
^ 2006年四国電力 四国の発電の割合 - 2010年12月8日閲覧
^ 2010年九州電力 火力発電の運用 - 2010年12月8日閲覧
^ 2009年沖縄電力 電力負荷の平準化の推進 - 2010年12月8日閲覧
^ 大阪・神戸ドイツ連邦共和国総領事館 ドイツが脱原発を選ぶ理由 - 2010年12月2日閲覧
^ 日本原子力産業協会 スウェーデンが選ぶ脱「脱原子力」 (PDF) - 2010年12月2日閲覧
^ ATOMICA 第4世代原子炉の概念 - 2010年12月11日閲覧
^ ATOMICA トリウムを用いた原子炉 - 2010年12月14日閲覧
^ 資源エネルギー庁 5か国エネルギー大臣会合共同声明 (PDF) - 2010年11月7日閲覧
^ 読売新聞 APECエネ相声明 原発建設を促進 - 2010年6月21日閲覧
^ a b ロイター UAE原発建設、韓国企業連合が受注 - 2009年12月28日閲覧
^ a b MSN産経ニュース ベトナム原発受注で日本勢敗退、首脳外交含め戦略見直しも - 2010年2月9日閲覧
^ 47News ベトナム、原発計画14基に 首相が開発方針承認 - 2010年6月23日閲覧
^ 資源エネルギー庁 原子力政策の現状について - 2010年12月11日閲覧
^ ATOMICA 原子力産業の国際動向 - 2010年12月12日閲覧
^ 東京電力 国際原子力開発株式会社の概要 (PDF) - 2010年11月14日閲覧
^ 電気事業連合会 原子力発電の現状 - 2010年10月30日閲覧
^ 関西原子力懇談会 原子燃料サイクルの意義 - 2010年10月30日閲覧
^ 北陸電力 発電から考える - 2010年10月30日閲覧
^ 日立原子力情報 原子力発電の経済性 - 2010年10月30日閲覧
^ 電源開発株式会社 原子力発電の供給安定性 - 2010年10月30日閲覧
^ 東京電力 原子力発電の経済性 - 2010年10月30日閲覧
^ 原子力委員会 原子力の研究、開発及び利用に関する長期計画 - 2010年10月30日閲覧
^ 毎日jp 国際原子力開発設立 - 2010年10月30日閲覧
^ ATOMICA 海水からのウラン回収 - 2010年10月30日閲覧
^ 資源エネルギー庁 電源立地制度の概要 (PDF) - 2010年10月30日閲覧
^ 電気事業連合会 原子力発電所の放射線管理 - 2010年10月30日閲覧
^ ATOMICA チェルノブイル原子力発電所事故による放射能の影響 - 2010年10月30日閲覧
^ 電気事業連合会 放射性廃棄物の処理・処分 - 2010年10月30日閲覧
^ 電気事業連合会 世界の高レベル放射性廃棄物処分計画 - 2010年10月30日閲覧
^ ATOMICA 解体廃棄物の放射能レベル区分 - 2010年10月30日閲覧
^ 資源エネルギー庁 放射性廃棄物と地層処分のHP - 2010年10月30日閲覧
^ 外務省 核テロリズムに対抗するためのグローバル・イニシアティブ - 2010年10月30日閲覧
^ 電気事業連合会 石油、石炭、天然ガス、ウランの確認可採埋蔵量 - 2010年10月30日閲覧
^ ATOMICA 劣化ウランとその利用 - 2010年10月30日閲覧
^ AllAbout 原子力の平和利用を考える - 2010年10月30日閲覧
^ PWR原子力発電所の停止曲線 - 2010年10月30日閲覧
^ 原子力委員会 経営から見た核融合発電の商用化条件 - 2010年12月11日閲覧
^ よく分かる原子力 電力を捨てる発電所 揚水式発電 - 2010年10月30日閲覧
^ よく分かる原子力 送電費用 - 2010年10月30日閲覧
^ 関西電力 原子力発電所の立地条件 - 2010年10月30日閲覧
^ 財団法人福島県原子力広報協会 - 2010年10月30日閲覧
^ 毎日jp 国際原子力開発設立 - 2010年10月30日閲覧
^ 日本技術者連盟 国際原子力発電技術移転機構 - 2010年10月30日閲覧
^ 文部科学省 原子力分野の人材育成について - 2010年10月30日閲覧
^ 医療科学社 平和的核エネルギー技術の安全性 (PDF) - 2010年11月3日閲覧
^ ATOMICA 炉心溶融 - 2011年3月26日閲覧
^ コトバンク 炉心溶融とは - 2011年3月26日閲覧
^ 中部電力 非常用炉心冷却系 - 2011年3月26日閲覧
^ ATOMICA 自己制御性 - 2011年3月26日閲覧
^ 参考美浜発電所3号機2次系配管破損事故柏崎市 INES (PDF) - 2010年11月3日閲覧
^ 総合エネルギー調査会原子力部会 第70回 原子力発電の経済性について - 2010年11月14日閲覧
^ 公益事業学会第55回全国大会 : 原子力発電の経済性に関する考察 2005年6月12日
^ 電力中央研究所 ライフサイクルCO2排出量による原子力発電技術の評価研究報告 - 2010年11月14日閲覧
^ 「北海道電力株式会社泊発電所 原子炉設置変更許可申請」平成15年6月 (PDF)
^ 北海道電力 泊発電所3号機の営業運転開始について - 2010年11月7日閲覧
^ TEPCO プレスリリース - 2010年10月30日閲覧
^ 「市原パワー株式会社市原発電所の運転開始について」平成16年9月30日
^ 北陸電力「敦賀火力発電所2号機(70万kW)の運転開始について」平成12年9月28日 (PDF)
^ 電源開発株式会社 「郡山布引高原風力発電所の竣工について」平成19年1月31日
参考資料 [編集]JAIF資料
神田 誠他 『原子力教科書 原子力プラント工学』 オーム社 2009年 ISBN 9784274206603
原子力ハンドブック編集委員会編 『原子力ハンドブック』 オーム社 2007年 ISBN 9784274204432
バーナード・L・コーエン著 近藤駿介監訳 『わたしはなぜ原子力を選択するか 21世紀への最良の選択』 ERC出版 1994年 ISBN 4900622052
有馬哲夫 『原発・正力・CIA 機密文書で読む昭和裏面史』 新潮新書 新潮社 2008年 ISBN 9784106102493
吉岡斉 『原子力の社会史 その日本的展開』 朝日選書 朝日新聞社 1999年 ISBN 9784022597243
コメント
コメント
コメントの投稿

管理者にだけ表示を許可する
トラックバック
トラックバック URL
トラックバック
copyright © 2020 Powered By FC2ブログ allrights reserved.